
A10: INSUFFICIENT LOGGING & MONITORING

Lack of proper logging, monitoring, and alerting let attacks go
unnoticed.

USE CASES
•	 Lack of logging, monitoring, alerting allow attackers to

go unnoticed
•	 Logs are not protected for integrity
•	 Logs are not integrated into Security Information and Event

Management (SIEM) systems
•	 Logs and alerts are poorly designed
•	 Companies rely on manual rather than automated systems

HOW TO PREVENT
•	 Log failed attempts, denied access, input validation failures,

any failures in security policy checks
•	 Ensure that logs are formatted to be consumable by

other tools
•	 Protect logs as highly sensitive
•	 Include enough detail to identify attackers
•	 Avoid having sensitive data in logs - If you need the information

for debugging purposes, redact it partially.
•	 Integrate with SIEMs and other dashboards, monitoring,

alerting tools

A1: BROKEN OBJECT LEVEL AUTHORIZATION

Attacker substitutes ID of their resource in API call with an ID of a
resource belonging to another user. Lack of proper authorization
checks allows access. This attack is also known as IDOR (Insecure
Direct Object Reference).

USE CASES
•	 API call parameters use IDs of resourced accessed by the API
•	 /api/shop1/financial_details
•	 Attackers replace the IDs of their resources with a different,

which they guessed
•	 /api/shop2/financial_details
•	 The API does not check permissions and lets the call through
•	 Problem is aggravated if IDs can be enumerated
•	 /api/123/financial_details

HOW TO PREVENT
•	 Implement authorization checks with user policies

and hierarchy
•	 Don’t rely on IDs sent from client. Use IDs stored in the session

object instead.
•	 Check authorization each time there is a client request to

access database
•	 Use random non-guessable IDs (UUIDs)

A2: BROKEN AUTHENTICATION

Poorly implemented API authentication allowing attackers to
assume other users’ identities.

USE CASES
•	 Unprotected APIs that are considered “internal”
•	 Weak authentication not following industry best practices
•	 Weak, not rotating API keys
•	 Weak, plain text, encrypted, poorly hashed, shared/default

passwords
•	 Susceptible to brute force attacks and credential stuffing
•	 Credentials and keys in URL
•	 Lack of access token validation (including JWT validation)
•	 Unsigned, weakly signed, non-expiring JWTs

HOW TO PREVENT
•	 Check all possible ways to authenticate to all APIs
•	 Password reset APIs and one-time links also allow users to get

authenticated and should be protected just as seriously
•	 Use standard authentication, token generation, password

storage, MFA
•	 Use short-lived access tokens
•	 Authenticate your apps (so you know who is talking to you)
•	 Use stricter rate-limiting for authentication, implement lockout

policies and weak password checks

A3: EXCESSIVE DATA EXPOSURE

API exposing a lot more data than the client legitimately needs,
relying on the client to do the filtering. Attacker goes directly to the
API and has it all.

USE CASES
•	 APIs return full data objects as they are stored by the database
•	 Client application shows only the data that user needs to see
•	 Attacker calls the API directly and gets sensitive data

HOW TO PREVENT
•	 Never rely on client to filter data
•	 Review all responses and adapt responses to what the API

consumers really need
•	 Define schemas of all the API responses
•	 Don’t forget about error responses
•	 Identify all the sensitive or PII info and justify its use
•	 Enforce response checks to prevent accidental data and

exception leaks

A4: LACK OF RESOURCES & RATE LIMITING

API is not protected against an excessive amount of calls or
payload sizes. Attackers use that for DoS and brute force attacks.

USE CASES
•	 Attacker overloading the API
•	 Excessive rate of requests
•	 Request or field sizes
•	 “Zip bombs”

HOW TO PREVENT
•	 Rate limiting
•	 Payload size limits
•	 Rate limits specific to API methods, clients, addresses
•	 Checks on compression ratios
•	 Limits on container resources

A5: BROKEN FUNCTION LEVEL AUTHORIZATION

API relies on client to use user level or admin level APIs. Attacker
figures out the “hidden” admin API methods and invokes
them directly.

USE CASES
•	 Some administrative functions are exposed as APIs
•	 Non-privileged users can access these functions if they

know how
•	 Can be a matter of knowing the URL, using a different

verb or parameter

/api/users/v1/user/myinfo
/api/admins/v1/users/all

HOW TO PREVENT
•	 Don’t rely on app to enforce admin access
•	 Deny all access by default
•	 Grant access based on specific roles
•	 Properly design and test authorization

A6: MASS ASSIGNMENT

USE CASES
•	 API working with the data structures
•	 Received payload is blindly transformed into an object

and stored

NodeJS:
var user = new User(req.body);
user.save();

Rails:
@user = User.new(params[:user])

•	 Attackers can guess the fields by looking at the GET
request data

HOW TO PREVENT
•	 Don’t automatically bind incoming data and internal objects
•	 Explicitly define all the parameters and payloads you

are expecting
•	 For object schemas, use the readOnly set to true for all

properties that can be retrieved via APIs but should never
be modified

•	 Precisely define at design time the schemas, types, patterns
you will accept in requests and enforce them at runtime

A7: SECURITY MISCONFIGURATION

Poor configuration of the API servers allows attackers to exploit
them.

USE CASES
•	 Unpatched systems
•	 Unprotected files and directories
•	 Unhardened images
•	 Missing, outdated, misconfigured TLS
•	 Exposed storage or server management panels
•	 Missing CORS policy or security headers
•	 Error messages with stack traces
•	 Unnecessary features enabled

HOW TO PREVENT
•	 Repeatable hardening and patching processes
•	 Automated process to locate configuration flaws
•	 Disable unnecessary features
•	 Restrict administrative access
•	 Define and enforce all outputs including errors

A8: INJECTION

Attacker constructs API calls that include SQL-, NoSQL-, LDAP-, OS-
and other commands that the API or backend behind it
blindly executes.

USE CASES
Attackers send malicious input to be forwarded to an internal
interpreter:
•	 SQL
•	 NoSQL
•	 LDAP
•	 OS commands
•	 XML parsers
•	 Object-Relational Mapping (ORM)

HOW TO PREVENT
•	 Never trust your API consumers, even if internal
•	 Strictly define all input data: schemas, types, string patterns -

and enforce them at runtime
•	 Validate, filter, sanitize all incoming data
•	 Define, limit, and enforce API outputs to prevent

data leaks

A9: IMPROPER ASSETS MANAGEMENT

Attacker finds non-production versions of the API: such as staging,
testing, beta or earlier versions - that are not as well protected, and
uses those to launch the attack.

USE CASES
•	 DevOps, cloud, containers, K8S make having multiple

deployments easy (Dev, Test, Branches, Staging, Old versions)
•	 Desire to maintain backward compatibility forces to leave old

APIs running
•	 Old or non-production versions are not properly maintained
•	 These endpoints still have access to production data
•	 Once authenticated with one endpoint, attacker may switch

to the other

HOW TO PREVENT
•	 Inventory all API hosts
•	 Limit access to anything that should not be public
•	 Limit access to production data. Segregate access to

production and non-production data.
•	 Implement additional external controls such as API firewalls
•	 Properly retire old versions or backport security fixes
•	 Implement strict authentication, redirects, CORS, etc.

OWASP
API Security Top 10

C H E A T S H E E T

4 2 C R U N C H . C O M

API Security Info & News
APIsecurity.io

42Crunch API Security Platform
42Crunch.com

VS Code OpenAPI Extension
http://bit.ly/42vscode

